High order well-balanced CDG-FE methods for shallow water waves by a Green-Naghdi model

نویسندگان

  • Maojun Li
  • Philippe Guyenne
  • Fengyan Li
  • Liwei Xu
چکیده

In this paper, we consider a one-dimensional fully nonlinear weakly dispersive Green-Naghdi model for shallow water waves over variable bottom topographies. Such model describes a large spectrum of shallow water waves, and it is thus of great importance to design accurate and robust numerical methods for solving it. The governing equations contain mixed spatial and temporal derivatives of the unknowns. They also have still-water stationary solutions which should be preserved in stable numerical simulations. In our numerical approach, we first reformulate the Green-Naghdi equations into balance laws coupled with an elliptic equation. We then propose a family of high order numerical methods which discretize the balance laws with well-balanced central discontinuous Galerkin methods and the elliptic part with continuous finite element methods. Linear dispersion analysis for both the (reformulated) Green-Naghdi system and versions of the proposed numerical scheme is performed when the bottom topography is flat. Numerical tests are presented to illustrate the accuracy and stability of the proposed schemes as ∗Corresponding author. Email addresses: [email protected] (Maojun Li), [email protected] (Philippe Guyenne), [email protected] (Fengyan Li), [email protected] (Liwei Xu) Maojun Li is currently at Beijing Computational Science Research Center, Beijing 100084, P.R. China Preprint submitted to Elsevier July 29, 2013 well as the capability of the Green-Naghdi model to describe a wide range of shallow water wave phenomena.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shallow water asymptotic models for the propagation of internal waves

We are interested in asymptotic models for the propagation of internal waves at the interface between two shallow layers of immiscible fluid, under the rigid-lid assumption. We review and complete existing works in the literature, in order to offer a unified and comprehensive exposition. Anterior models such as the shallow water and Boussinesq systems, as well as unidirectional models of Camass...

متن کامل

A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations

We introduce a new class of two-dimensional fully nonlinear and weakly dispersive Green-Naghdi equations over varying topography. These new Green-Naghdi systems share the same order of precision as the standard one but have a mathematical structure which makes them much more suitable for the numerical resolution, in particular in the demanding case of two dimensional surfaces. For these new mod...

متن کامل

A new class of two-layer Green-Naghdi systems with improved frequency dispersion

We introduce a new class of Green-Naghdi type models for the propagation of internal waves between two (1 + 1)-dimensional layers of homogeneous, immiscible, ideal, incompressible, irrotational fluids, vertically delimited by a flat bottom and a rigid lid. These models are tailored to improve the frequency dispersion of the original bi-layer Green-Naghdi model, and in particular to manage high-...

متن کامل

Derivation of asymptotic two-dimensional time-dependent equations for ocean wave propagation

A general method for the derivation of asymptotic nonlinear shallow water and deep water models is presented. Starting from a general dimensionless version of the water-wave equations, we reduce the problem to a system of two equations on the surface elevation and the velocity potential at the free surface. These equations involve a Dirichlet-Neumann operator and we show that all the asymptotic...

متن کامل

Optimized Green-Naghdi Equations for the Modelling of Waves Nearshore Transformations

The fully nonlinear and weakly dispersive Green-Naghdi equations for shallow water waves of large amplitude is studied. An hybrid finite volume and finite difference splitting approach is proposed. Numerical validations are then performed in one horizontal dimension.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 257  شماره 

صفحات  -

تاریخ انتشار 2014